skip to main content


Search for: All records

Creators/Authors contains: "Wang, Guanhua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The work examines a combined supervised-unsupervised framework involving dictionary-based blind learning and deep supervised learning or MR image reconstruction from under-sampled k-space data. A major focus of the work is to investigate the possible synergy of learned features in traditional shallow reconstruction using sparsity-based priors and deep prior-based reconstruction. Specifically, we propose a framework that uses an unrolled network to refine a blind dictionary learning based reconstruction. we compare the proposed method with strictly supervised deep learning-based reconstruction approaches on several datasets of varying sized and anatomies. 
    more » « less
  2. Abstract

    A kinetic Monte Carlo model of polyurethane polymerization which explicitly tracks the polymer sequences is developed and shared. This model is benchmarked against theoretical and experimental polyurethane data and used to investigate the effect on oligomer distributions of unequal reactivity of the first and second isocyanate to react. The reverse reactions using thermodynamic consistency are then added to the framework, and analogous to the addition polymerization concept of ceiling temperature, equilibrium chain length distributions at various temperatures are calculated. For a mixture of three monomers AA, BB, and CC, where BB and CC do not react with one another, are present in stoichiometric proportions, and have different enthalpies of reaction with AA, an odd‐even effect emerges. Odd length chains are more likely than even length chains for temperatures at which BB and CC have significantly different equilibrium conversions. The concept of ceiling temperature that is typically cited for addition polymers is extended here to provide a measure of conditions under which depolymerization for recycling is favored.

     
    more » « less